

Aeronautics Blueprint Toward A Bold New Era of Aviation 2002 2005 2008 2009 2012 The NASA Aeronautics Blueprint -Toward a Bold New Era of Aviation

- i. The NASA Aeronautics Blueprint— Towards a Bold new Era of Aviation
- ii. Table of Contents
- iii. Executive Summary
- 1.0 The Imperative
 - 1.1 Aviation is Critical to the U.S.
 - 1.2 Key Aviation Challenges
 - 1.3 Role of Government in Aeronautics Research
 - 1.4 Ongoing NASA/DoD Collaboration
 - 1.5 Ongoing NASA/FAA Collaboration
 - 1.6 The NASA Role
 - 1.7 First Century of Aviation Progress
 - 1.8 Aviation's Future

2.0 A Bold New Era is Possible

- 2.1 A Bold New Era of Aviation is Possible
- 2.2 Organization of the Aeronautics Blueprint
- 2.3 A Collaborative Strategy Based on System Analysis

- 2.4 The Airspace System
 - 2.4.1 Weather
 - 2.4.2 Traffic Optimization
 - 2.4.3 High-Flow Airports
 - 2.4.4 Communication, Navigation, and Surveillance
- 2.5 Revolutionary Vehicles
 - 2.5.1 Capabilities
 - 2.5.2 Technologies
 - 2.5.3 Noise
 - 2.5.4 Emissions
 - 2.5.5 Safety
- 2.6 Aviation Security and Safety
 - 2.6.1 Aircraft Hardening
 - 2.6.2 Flight Procedures and Monitoring
 - 2.6.3 Surveillance and Intervention
 - 2.6.4 Information Technology

3.0 State-of-the-Art Educated Workforce

- 3.1 Approach to Education
- 3.2 Accomplishing Enterprise Mission

4.0 Summary and Actions

- 4.1 Summary
- 4.2 NASA's First Steps to Achieve the Vision

- Aviation is crucial to U.S. economic health, national security, and overall quality of life.
- Our Nation is facing serious challenges in aviation.
- NASA's Aeronautics Blueprint outlines the advanced technologies that can help solve today's problems and create a new level of performance and capability in aviation:
 - Advanced concepts for the airspace system
 - Revolutionary vehicles with significantly greater performance
 - New paradigm for safety and security
 - Assured development of the capable workforce of the future
- The cost of inaction is gridlock, constrained mobility, unrealized economic growth, and loss of U.S. aviation leadership.

The Imperative

Aeronautics Blueprint Aviation is Critical to the U.S.

Economic Growth

- Productivity
- Global Competition
- Fullest Commercial Use

Relative Growth Reference to 1970 **Aviation Contributes and Enables Economic Growth** Cargo Traffic A Passenger Traffic • GDP + 1960 2010 1970 2000 1980

Aviation Contributes >\$26.7 Billion to Positive U.S. Balance of Trade **Billions of Dollars** 50 -100 -150

Balance of Trade by Manufacturing Sector for Year 2000

National Security

- Air Superiority IIIII
- Global Mobility

Quality of Life

- Freedom of Movement
- General Welfare

■ Limits to capacity - U.S. aviation system is approaching gridlock.

■ Noise and emissions are constraints on aviation growth.

■ Security and safety must be maintained.

Aeronautics Blueprint Key Aviation Challenges (Continued)

■ The changing national security threat demands technical superiority.

■ Aerospace R&D investments and skilled workforce are declining.

■ The U.S. is losing global market share and leadership.

Aerospace Funding for R&D Billions of Dollars (FY 2000) 40 **Federal** 35 Non-Federal 30 25 20 15 5 1987 1989 1991 1993 1995 1997 98

Aeronautics Blueprint Role of Government in Aeronautics Research

Government Responsible to Provide:

Air Traffic Operations	Enabling Technology in the National Interest	National Security
 Safe and secure Environmentally compatible Meet growing demand 	 Basic research High-risk technology Unique facilities Educated workforce 	 Air superiority Technical superiority Full-spectrum dominance

- Technologies flow between civil, military, and commercial applications
- Need for Government role in aeronautics technology

Aeronautics Blueprint Ongoing NASA/DoD Collaboration

NASA is collaborating in strategic planning and is providing technical solutions to DoD:

Adaptive controls

■ Situational awareness

■ DoD Joint Vision 2020

Quadrennial **Defense Review** Report

Aeronautics Blueprint Ongoing NASA/FAA Collaboration

NASA is currently supporting FAA Operational Evolutionary Plan (OEP):

Programs

- NASA participated in planning
- NASA is in partnership on critical path

Organization of challenges addressed by OEP

NASA's technology is prominent in the FAA's roadmaps

NASA provides enabling technologies, expertise, state-of-the-art facilities, and technology solutions:

Economic Growth Productivity Global Competition Fullest Commercial Use

National Security

- Air Superiority IIIII
- Global Mobility

Quality of Life

- Freedom of Movement
- General Welfare

Aeronautics Blueprint First Century of Aviation Progress

Technology advances have enabled today's world of aviation . . .

Glass Cockpit

777, Supercritical Wing, **Highly Reliable Engines**

KC-135/707, Jet Age

Air Traffic Radar

B-47, Swept Wing, Jet Propulsion

Wright Flyer

DC-3, Riveted Metal Structure, Retractable Gear

Constellation, Pressurized Cabin, Limit on Piston Propulsion

1900

1950

2000

Aeronautics Blueprint Aviation's Future is Driven by Technology

1900 1st Century of Flight 2000

2nd Century

A Bold New Era is Possible

Aeronautics Blueprint A Bold New Era of Aviation is Possible

■ On-Time-All the Time

Aviation Security and Safety

■ Freedom of Mobility, **Access to Communities Large and Small**

■ Meeting the **Changing Threat**

■ Clean, Quiet, Good-**Neighbor Airports**

■ New Choices in Personal **Air Transportation**

Aeronautics Blueprint Organization of the Aeronautics Blueprint

The Blueprint has four major elements:

National Security

- Air Superiority IIIII
- Global Mobility

Quality of Life

- Freedom of Movement
- General Welfare

1. The Airspace **System**

2. Revolutionary **Vehicles**

3. Security and Safety

4. An Educated Workforce

Aeronautics Blueprint A Strategy Based on System Analysis

Collaborative Partners

Investment Strategy

Aeronautics Blueprint

Toward a Bold New Era of Aviation

Research and Systems Engineering

Government, Industry, and Academia collaborations

- Systems engineering
- Defining requirements
- Research & technology development

NASA Research Centers:

National Goals

Economic Growth

- Productivity
- Global Competition
- Fullest Commercial Use

National Security

- Air Superiority
- Global Mobility

Quality of Life

- Freedom of Mobility
- General Welfare

Simultanious Operations Information Technology Precision Navigation Streaming Flight Recorder Flight Path Monitoring Advanced Sensors High-Flow Airports High-resolution Weather Morphing Airframe General Aviation Synthetic Vision Propulsion Refuse-to-Crash Aging Aircraft Nanotechnology

Today's Challenges:

Overcome reduced throughput in bad weather

- Eliminate en route congestion and the "domino effect" throughout the system
- Keep pace with demand for arrival and departures at benchmark airports*
- Increase situational awareness in the system

Technology Solutions:

High-resolution weather

- Precise forecasts
- Precise wake vortex knowledge

System-level traffic flows optimization

Separation assurance for complex traffic flows

High-flow airports

- No gaps in arrival and departure streams
- Efficient surface movement and rapid reconfiguration

Communication, navigation, and surveillance

- High-bandwidth and reliable data@ransmission
- Precision navigation
- System wide coverage

Aeronautics Blueprint The Airspace System—Weather

Today's Challenges:

- Reduce disruptions of en route traffic due to bad weather
- Eliminate delays in terminal area airspace
 - Efficiently manage terminal area traffic flow
 - Understand wake vortex movement and dissipation

- Complete digital knowledge of the en route atmosphere
 - Precision forecasts
 - Sensors
 - Worldwide measurements
 - Data processing
 - Information dissemination

- Precise local weather forecasts integrated with airport operations
 - Reliable prediction and conformation of wake vortices integrated with atmospheric conditions

Aeronautics Blueprint The Airspace System—Traffic Optimization

Today's Challenges:

- Eliminate the air traffic "domino effect" across the National Airspace **System**
 - Geographic "choke" points"
 - Limited airspace/sector flexibility
- Increase airline flexibility to manage contingencies
- Minimize congestion in complex traffic situations

Controllers

- **National airspace** management
 - Remove restrictions across facilities and sectors
 - Distributed air-ground traffic management
 - Assured safe and efficient flight path
 - Use of precision weather and aircraft position
- Interactive monitoring and goal setting
- System-level (en route and local) traffic flow planning and decision making

Today's Challenges:

- Eliminate gaps in arrival/departure streams.
- Increase airport operations in bad weather.
 - Single-runway use limits
 - Parallel-runway use limits
- Enable rapid reconfiguration of runways.
- Integrate short-haul aircraft into airport operations.
- Exploit 5,000 underutilized public airports.

- Integrated arrival, departure, and surface decision-support tools
 - Precision spacing and merging
 - Optimized surface operations
- All-weather situational awareness and response
 - Synthetic vision
 - Computer-assisted air and ground coordination
- New airport design and operation models
 - Intelligent runways and taxiways
 - Simultaneous landings and departures
- Smart non-towered airports
 - Autonomous sequencing and scheduling

Aeronautics Blueprint The Airspace System-CNS*

Today's Challenges:

- Congested frequency spectrum limiting air traffic growth
- Voice-based air traffic control cannot support complex air traffic management concepts
- System provides insufficient security & integrity
- Communications capacity cannot support future air traffic management
- Coverage is lacking in remote and oceanic regions

Technology Solutions:

communications

- Airborne internet
- Secure networked communications
- Remote surveillance of all airspace
- Satellite communications and surveillance
 - Global urveillance and communications
 - Real-time cockpit weather and other hazard awareness
- Digital broadband communication

Today's Challenges:

Reduce noise

Eliminate airport restrictions

Lower emissions

- Reduce greenhouse gases
- Improve local air quality

Improve safety

Reduce the accident rate

Enhance capabilities advance technology

- Autonomous operation
- Supersonic overland flight
- Runway independence

Technology Solutions:

Intelligent Sensors

Morphing

Airframes

- Integrated airframe and propulsion systems
- Active flow and noise control
- Intelligent propulsion systems
- **Fuel-efficient vehicles**
- **Robust flight control**
 - Reconfigurable control laws
- Integrated vehicle health monitoring
- **Automated decision aids**
- Advanced vehicle concepts

Aeronautics Blueprint Revolutionary Vehicles-Capabilities

Today's Challenges:

Future Possibilities:

Long-duration and large, long-haul transportation

■ Months aloft at high-altitudes and long distances

High-speed commercial transportation

■ Quiet, efficient, affordable supersonic flight

Quiet and efficient runwayindependent aircraft

■ Extremely short takeoff and landing-doorstepto-doorstep

Autonomous operations capability

■ Intelligent flight controls, micro-vehicles to transports

Aeronautics Blueprint Revolutionary Vehicles—Technologies

Today's Challenges:

- Develop light, strong, and structurally efficient air vehicles.
- Improved aerodynamic efficiency.
- Design fuel-efficient, lowemission propulsion systems.
- **Develop safe, fault-tolerant** vehicle systems.

Nanotube

Active Flow Control

- Nanostructures: 100 times stronger than steel at 1/6 the weight
- Active flow control
- **Distributed propulsion**
- Electric propulsion, advanced fuel cells, highefficiency electric motors
- Integrated advanced control systems and information technology
- Central "nervous system" and adaptive Dehicle control

Aeronautics Blueprint Revolutionary Vehicles-Noise

0

Today's Challenges:

- Keep noise inside airport boundaries.
 - Reduce the number of restrictions from the current 825 worldwide.
 - Eliminate the need to sound-condition homes near airports.
 - Revolutionize how citizens view airports.

Aeronautics Blueprint Revolutionary Vehicles-Emissions

Today's Challenges:

Improve local air quality; reduce NO_v

Projected to increase fourfold by 2050

Projected to increase threefold by 2050

Technology Solutions:

Thrust

Electric

H₂ Fuel Cell

Motor

Intelligent combustors

- Sensors and actuators to control the combustion process
- Smart materials

Increased fuel efficiency

- Ultra-lightweight and efficient aircraft
- Dual-fan engines
- Distributed propulsion

Electric propulsion

- Fuel cells
- Global hydrogen generation and distribution

(H₂)

Aeronautics Blueprint Revolutionary Vehicles-Safety

Today's Challenges:

Technology Solutions:

Provide all-weather visibility.

Eliminate human error.

- Reduce component failures.
- Minimize the impact of weather hazards.

Identify hidden risks.

- **Synthetic vision provides** visibility in all conditions
- "Refuse to crash" flight controls with digital terrain technology
- **Human-centered designs**
- Fault detection and reconfigurable systems
- **Self-healing systems**
- Precise knowledge of atmospheric conditions
- Advanced modeling of air traffic to identify and minimize risk

Aeronautics Blueprint Aviation Security and Safety

Today's Challenges:

- Protect the public, passengers, and crew from danger or injury.
- Protect the airplane from threats.
- Prevent the aviation system from being used for malicious purposes.
- Develop solutions maximizing security of the Nation's aviation system while minimizing cost and unintentional consequences.

- Aircraft and systems hardening
- Flight operations with enhanced procedures and monitoring
- Air traffic surveillance and intervention
 - Onboard flight control
 - Ground control override
- **Enhance security systems** through application of information technology
 - Passenger threat assessment from reservation to boarding
 - Analysis of security data from 100's of airports and thousands of flights

Aeronautics Blueprint Aviation Security and Safety-Aircraft Hardening

Today's Challenges:

Technology Solutions:

Design systems to tolerate failures and damage.

Provide onboard network security and protection.

Minimize fuel-fed fires

- **Blast-resistance** structures, which can withstand damage and land safely
- Fault detection and reconfigurable avionics
- **Self-healing systems**
- **Recoverable computers** with Software-virus protection
- **Network intrusion** prevention
- Secure communications
- Self-extinguishing fuel

Aviation Security and Safety–Flight Procedures and Monitoring

Today's Challenges:

 Assure predictable approaches to metropolitan areas and around prohibited locations.

Increase situation awareness of terrain and special airspace.

Improve detection of deviations from the intended flight path.

- Precise flight path management
 - Complex curved approaches
 - Four-dimensional approaches
- Advanced modeling and evaluation of air traffic to identify and minimize risk
 - "Intelligent" advisor for authorities
 - Simulate scenarios for training and mitigation strategy development
- Remote monitoring of flight path conformance
 - Notification of deviations
 - Rapid intervention strategy

Aviation Security and Safety–Surveillance and Intervention 2002 2005 2008 2009 20

Technology Solutions:

Today's Challenges:

- Rapid detection of any state of duress on an airborne aircraft
 - Terrorist on board
 - Hazardous materials or other on-board threats
- Prevent intentional, destructive pilotcontrolled flight.
- Prevent hazardous flight from non-malicious pilot actions.

Ground Control Override

Remote audio and visual links to cabin

and cockpit

- Real-time cockpit and flight data transmission to a remote monitoring center
- "Refuse to Crash" flight system can correct pilot error and prevent sabotage
 - Real-time dynamic avoidance threshold algorithms
 - Automatic avoidance maneuvers, autonomous navigation, and landing
 - Ground control override

Aviation Security and Safety–Information Technology 2002 2005 2008 20

Today's Challenges:

Rapid pre-departure passenger screening and threat assessment

Technology Solutions:

Threat Assessment

- Real-time passenger threat assessment from reservation to boarding
 - Intelligent searches of distributed databases
 - Biometric identification
 - Context-sensitive threat evaluation
- Aviation Security Reporting System
 - Anonymous submission of security incidents
 - Data Mining to identify trends of concern and initiate preventative action

CIA FBI INS IRS Interpol

National Information System for Transportation Security

State-of-the-Art Educated Workforce

Aeronautics Blueprint Educated Workforce—Approach to Education

Today's Challenges:

- Baise the interest in science and engineering in elementary, middle, and high schools.
- Prepare future graduates for a world of rapid technological change, complex systems, and advancements around the world.
- Maintain the high-tech workforce on par with the continuously advancing state of technology.

Technology Solutions:

Foster interest and excitement in aerospaceestablish an exciting vision for aeronautics

Stimulate curriculum change and virtual and collaborative learning environments that will enhance educational relevance and scope

Create life-long learning system that links classrooms to laboratories and on-thejob experiences

Educated Workforce—Accomplishing the Enterprise Mission 2002 2005 2008 200

Today's Challenges:

- Adjust to the rapid loss of senior scientists and engineers (baby boomer demographics and reduced interest)
- Ensure seamless access to specialized talents and geographically dispersed teams.
- Keep pace with the rapid change of technology.
- Fill-in the knowledge gaps of aerospace research and technology to support major advances for the next generation of aerospace products.

- Develop long-term partnerships between government, universities, and industry research entities
- Create virtual collaborative research laboratories working on multi-discipline projects

- Workplace virtual classrooms support lifelong and advanced distributed learning
- Adaptive learning computer systems for access to global scientific and technology knowledge

Summary and Actions

- Driven by technology advances, aviation has progressed remarkably over the past century.
- Today's air transport system is facing severe constraints on further growth and service to the Nation.
- New technologies and operational concepts, nearly in hand and in early development, offer the potential to far surpass those constraints and create a new level of performance and capability in aviation.
- NASA, academia, FAA, DOT, DoD, and industry are needed in order to realize this vision.
- Now is the time to aggressively pursue
 - advanced concepts for the airspace system;
 - revolutionary vehicles with significantly greater performance;
 - new paradigms for safety and security; and
 - the development of a capable, flexible workforce of the future.

NASA's First Steps to Achieve the Vision

- Structure investments and performance metrics based on systems analysis and public good.
- Evaluate, realign, and strengthen our workforce, facilities, partnerships, and ways of doing business.
- Renew our focus on innovation in engineering tools and capabilities for complex aerospace systems:
 - Act in partnership with industry
 - Act as a catalyst for the future workforce
- Restructure approach and portfolio for long-term research:
 - New national technology competencies
 - New, expanded approach to University Research Center partnerships
- Continue to strengthen interagency partnerships to meet national needs.
- NASA is embarking on technological changes for the 21st century.